
CSE 210: Computer Architecture

Lecture 22: Floating Point

Stephen Checkoway

Slides from Cynthia Taylor

1

CS History: IBM 704 Data-Processing Machine

Man and woman working with IBM type 704

electronic data processing machine used for making
computations for aeronautical research. By NASA,
Public Domain

• First mass-produced computer with floating
point arithmetic

• Introduced in 1954

• Had 36 bit words

• Floating point had
– 1 sign bit
– 8 bit exponent (biased by 127)
– 27 bit fraction (no hidden bit)

• "pretty much the only computer that could
handle complex math” at the time

Review

• Unsigned 32-bit integers let us represent 0 to 232 – 1

• Signed 32-bit integers let us represent – 231 to 231 – 1

• 32-bit floating point numbers let us represent a wider range of
values: larger, smaller, fractional

(-1)s * 1.x * 2e

• 1 bit for sign s (1 = negative, 0 = positive)

• 8 bits for exponent e

• 0 bits for implicit leading 1 (called the “hidden bit”)

• 23 bits for significand (without hidden bit)/fraction/mantissa x

1.001100101 * 27 as a single word

• 1.001100101 * 27 as a single word becomes

– Sign =

– Exponent =

– Significand =

If we gave more bits to the exponent, and
fewer to the fraction, we could represent

A. Fewer individual numbers

B. More individual numbers

C. Numbers with greater magnitude, but less precision

D. Numbers with smaller magnitude, but greater precision

Want To Make Comparisons Easy

• Can easily tell if number is positive or negative

– Just check MSB bit

• Exponent is in higher magnitude bits than the fraction

– Numbers with higher values will look bigger

– 0 00000111 10000000000000000000000 = 1.1 * 27

– 0 00001000 10000000000000000000000 = 1.1 * 28

Problem with Two’s Compliment

• 0 00000111 10000000000000000000000 = 1.1 * 27

• 0 00001000 10000000000000000000000 = 1.1 * 28

• 0 11111000 10000000000000000000000 = 1.1 * 2-8

• Solution: Get rid of negative exponents!

– We can represent 28 = 256 numbers: normal exponents -126 to 127
and two special values things like infinity

– Add 127 to value of exponent to encode it, subtract 127 to decode

(-1)s * 1.x * 2e

• 1 bit for sign s (1 = negative, 0 = positive)

• 8 bits for exponent e + 127

• 0 bits for implicit leading 1 (called the “hidden bit”)

• 23 bits for significand (without hidden bit)/fraction x

Encode 1.000000001 * 27 in 32-bit Floating Point

A. 0 00000111 00000000100000000000000

B. 0 00000111 10000000010000000000000

C. 0 10000110 00000000100000000000000

D. 0 10000110 10000000010000000000000

E. None of the above

How Can We Represent 0 in Floating Point (as
described so far)?

A. 0 00000000 00000000000000000000000

B. 0 01111111 00000000000000000000000

C. 1 00000000 00000000000000000000000

D. More than one of the above

E. We can’t represent 0

Special Cases

• Subnormal number: Numbers with magnitude smaller than 2-126

– They have an implicit leading 0 bit and an exponent of 2-126

• NaN: Not a Number. Results from 0/0, 0 * ∞, (+∞) + (–∞) , etc.

Exponent Significand

Zero 0 0

Subnormal 0 Nonzero

Infinity 255 0

NaN 255 Nonzero

Overflow/underflow

• Overflow happens when a positive exponent becomes too
large to fit in the exponent field

• Underflow happens when a negative exponent becomes too
large (in magnitude) to fit in the exponent field

• One way to reduce the chance of underflow or overflow is to
offer another format that has a larger exponent field

– Double precision – takes two 32-bit words

Double precision in IEEE Floating Point

s E (exponent) F (fraction)

1 bit 11 bits 20 bits

F (fraction continued)
32 bits

Floats in higher-level languages

• C, Java: float, double

• JavaScript: numbers are always 64-bit double precision

• Rust: f32, f64

• Sometimes intermediate values (e.g., x*y in x*y + z) may be
doubles (or larger types!) even when the inputs are all floats

Which of these numbers does not exist in
JavaScript?

A. 9007199254740991

B. 9007199254740992

C. 9007199254740993

D. 9007199254740994

E. More than one of the above

Hint: 9007199254740992 is 253

There are always 252 evenly spaced doubles
between 2n and 2n+1. How many floats will there be

between 2n and 2n+1?
A. 28

B. 223

C. 232

D. 252

E. None of the above

Float

Double

Weird Float Tricks

• For floats of the same sign:

– Adjacent floats have adjacent integer representations

– Incrementing the integer representation of a float moves to the next
representable float, moving away from zero

• This is specific to the IEEE 754 implementation of floating point!

• Want to play around with floats?

– https://float.exposed/

Adding in floating point (assuming 4 fractional bits)

• Add together 1.1011 * 20 and 1.0110 * 22

• Normalize so both have the larger exponent

– .0110 * 22 + 1.0110 * 22

• Add significands taking sign of numbers into account

– 1.1100 * 22

• Normalize to a single leading digit

– 1.1100 * 22

What problems could we run into doing this in
hardware with 32-bit floats?

A. Added fraction could be longer than 23 bits

B. Normalized exponent could be greater than 127 or less than
-126

C. Shifting fraction to match largest exponent could take more
than 23 bits

D. The inputs could be zero or the result could be zero

E. More than one of the above

Floating point addition algorithm

Input: two single-precision, floating point numbers x, and y

Output: x + y

1. If either x or y is 0, return the other one

2. Denormalize x or y to give them both the larger exponent

3. Add the significands (as integers; hidden bit + 23-bit fraction),
taking sign into account

4. If the result is 0, return 0

5. Normalize the result by shifting the added significands left/right
and increasing/decreasing the exponent
Ex: 10011.101 * 2-1 = 1001.1101 * 20 = 100.11101 * 21

In Javascript, you perform the operation
9007199254740992 + 1. What is the result?

A. -9007199254740992

B. 9007199254740992

C. 9007199254740993

D. This will cause an error

E. None of the above

How many times will this loop run in python?
a = 1000

while a != 0:

 a -= 0.001

A. 1000 times

B. 100000 times

C. 1000000 times

D. It will run forever

E. None of the above

This will run forever
a = 1000

while a != 0:

 a -= 0.001

• a is never 0, instead it goes from 1.673494676862619e-08 to -
0.0009999832650532314.

• Takeaway: Float equality is hard! Usually want to check within
a small range

FP Adder Hardware

• Much more complex than integer adder

• Doing it in the general purpose ALU/CPU would take too long

– Much longer than integer operations

– Slower clock would penalize all instructions

• FP adder usually takes several cycles

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Reading

• Next lecture: Floating Point, addressing

29

	Slide 1: CSE 210: Computer Architecture Lecture 22: Floating Point
	Slide 3: CS History: IBM 704 Data-Processing Machine
	Slide 4: Review
	Slide 5: (-1)s * 1.x * 2e
	Slide 6: 1.001100101 * 27 as a single word
	Slide 7: If we gave more bits to the exponent, and fewer to the fraction, we could represent
	Slide 8: Want To Make Comparisons Easy
	Slide 9: Problem with Two’s Compliment
	Slide 10: (-1)s * 1.x * 2e
	Slide 11: Encode 1.000000001 * 27 in 32-bit Floating Point
	Slide 12: How Can We Represent 0 in Floating Point (as described so far)?
	Slide 13: Special Cases
	Slide 14: Overflow/underflow
	Slide 15: Double precision in IEEE Floating Point
	Slide 16: Floats in higher-level languages
	Slide 17: Which of these numbers does not exist in JavaScript?
	Slide 18: There are always 252 evenly spaced doubles between 2n and 2n+1. How many floats will there be between 2n and 2n+1?
	Slide 19: Weird Float Tricks
	Slide 20: Adding in floating point (assuming 4 fractional bits)
	Slide 21: What problems could we run into doing this in hardware with 32-bit floats?
	Slide 22: Floating point addition algorithm
	Slide 23: In Javascript, you perform the operation 9007199254740992 + 1. What is the result?
	Slide 25: How many times will this loop run in python?
	Slide 26: This will run forever
	Slide 27: FP Adder Hardware
	Slide 28: FP Adder Hardware
	Slide 29: Reading

